哪个网站可以做免费请帖,网站违法和做网站得有关系,抖音小程序实名认证怎么解除,wordpress 注入 实战一、混淆矩阵的定义 混淆矩阵是一种用于评估分类模型性能的评估指标。当模型对数据进行预测并将数据分配到预定义的类别时#xff0c;混淆矩阵提供了一种直观的方式来总结这些预测与数据实际类别之间的对应关系。具体来说#xff0c;它是一个表格。
二、分类模型性能评估一级…一、混淆矩阵的定义 混淆矩阵是一种用于评估分类模型性能的评估指标。当模型对数据进行预测并将数据分配到预定义的类别时混淆矩阵提供了一种直观的方式来总结这些预测与数据实际类别之间的对应关系。具体来说它是一个表格。
二、分类模型性能评估一级指标
分类模型的性能评估指标有三个等级一级评估指标如下
真正例True Positives, TP模型预测为正类实际上也是正类的样本数。假正例False Positives, FP模型预测为正类但实际上为负类的样本数。真负例True Negatives, TN模型预测为负类实际上也是负类的样本数。假负例False Negatives, FN模型预测为负类但实际上为正类的样本数。
混淆矩阵就是根据一级分类指标得到的一张表。 我自己的理解是三句话
第一句分类你可以理解成猜迷猜的对不对用“T真F假”来表示。
第二句你猜的这个东西的时候你猜测它类别是“P正”还是“N负”。
第三句你猜的这个东西它本身的分类用“标签label”表示。
所以按照上面的三句话理解举几个例子 情况一这个东西本来的“标签”是“正”的我猜它是“正”意味着我猜对了故TP。 情况二这个东西本来的“标签”是“负”的我猜它是“负”意味着我猜对了故TN。 情况三这个东西本来的“标签”是“正”的我猜它是“负”意味着我猜错了故FN。 情况四这个东西本来的“标签”是“负”的我猜它是“正”意味着我猜错了故FP。 二、分类模型性能评估二级指标 分类模型的二级评估指标在之前的文章中提到过但没有总结过。因此在本文章简单总结一下
四个二级指标 二级指标公式意义准确率Accuracy分类模型所有判断正确的结果占总观测值的比重精确率Precision在模型预测是Positive的所有结果中模型预测对的比重 召回率Recall 又叫灵敏度Sensitivity 在真实值是Positive的所有结果中模型预测对的比重特异度Specificity在真实值是Negative的所有结果中模型预测对的比重
更多更详细的知识点在往期文章中有提到下面是跳转链接
【机器学习300问】25、常见的模型评估指标有哪些https://blog.csdn.net/qq_39780701/article/details/136407056
三、分类模型新能评估三级指标 分类模型的三级评估指标就是F1分数在之前的文章中提到过。这里就不赘述了。
【机器学习300问】32、F1分数是什么https://blog.csdn.net/qq_39780701/article/details/136607068
四、混淆矩阵举例说明 以一个图片多分类问题为例想要判断一张图片是“猫”、“狗”和“猪”其中的哪一种。 混淆矩阵中的数值是样本数量如果我们要计算准确率accuracy那么可以统计所有表中数字的总和做分母。对角线相加做分子因为对角线上的元素代表模型预测结果是正确的。可以算出