当前位置: 首页 > news >正文

三亚做网站服务企业网站制作价格

三亚做网站服务,企业网站制作价格,湖南郴州市旅游景点,校园服装网站建设预算1. CA注意力机制 CA(Coordinate Attention)注意力机制是一种用于加强深度学习模型对输入数据的空间结构理解的注意力机制。CA 注意力机制的核心思想是引入坐标信息,以便模型可以更好地理解不同位置之间的关系。如下图: 1. 输入特…

1. CA注意力机制

CA(Coordinate Attention)注意力机制是一种用于加强深度学习模型对输入数据的空间结构理解的注意力机制。CA 注意力机制的核心思想是引入坐标信息,以便模型可以更好地理解不同位置之间的关系。如下图:

1. 输入特征: CA 注意力机制的输入通常是一个特征图,它通常是卷积神经网络(CNN)中的某一层的输出,具有以下形状:[C, H, W],其中:

  • C 是通道数,表示特征图中的不同特征通道。
  • H 是高度,表示特征图的垂直维度。
  • W 是宽度,表示特征图的水平维度。

2. 全局平均池化: CA 注意力机制首先对输入特征图进行两次全局平均池化,一次在宽度方向上,一次在高度方向上。这两次操作分别得到两个特征映射:

  • 在宽度方向上的平均池化得到特征映射 [C, H, 1]
  • 在高度方向上的平均池化得到特征映射 [C, 1, W]

这两个特征映射分别捕捉了在宽度和高度方向上的全局特征。

3. 合并宽高特征: 将上述两个特征映射合并,通常通过简单的堆叠操作,得到一个新的特征层,形状为 [C, 1, H + W],其中 H + W 表示在宽度和高度两个方向上的维度合并在一起。

4. 卷积+标准化+激活函数: 对合并后的特征层进行卷积操作,通常是 1x1 卷积,以捕捉宽度和高度维度之间的关系。然后,通常会应用标准化(如批量标准化)和激活函数(如ReLU)来进一步处理特征,得到一个更加丰富的表示。

5. 再次分开: 分别从上述特征层中分离出宽度和高度方向的特征:

  • 一个分支得到特征层 [C, 1, H]
  • 另一个分支得到特征层 [C, 1, W]

6. 转置: 对分开的两个特征层进行转置操作,以恢复宽度和高度的维度,得到两个特征层分别为 [C, H, 1][C, 1, W]

7. 通道调整和 Sigmoid: 对两个分开的特征层分别应用 1x1 卷积,以调整通道数,使其适应注意力计算。然后,应用 Sigmoid 激活函数,得到在宽度和高度维度上的注意力分数。这些分数用于指示不同位置的重要性。

8. 应用注意力: 将原始输入特征图与宽度和高度方向上的注意力分数相乘,得到 CA 注意力机制的输出。

2. YOLOv8添加CA注意力机制

加入注意力机制,在ultralytics包中的nn包的modules里添加CA注意力模块,我这里选择在conv.py文件中添加CA注意力机制。

CA注意力机制代码如下:

import torch
import torch.nn as nn
import torch.nn.functional as Fclass h_sigmoid(nn.Module):def __init__(self, inplace=True):super(h_sigmoid, self).__init__()self.relu = nn.ReLU6(inplace=inplace)def forward(self, x):return self.relu(x + 3) / 6class h_swish(nn.Module):def __init__(self, inplace=True):super(h_swish, self).__init__()self.sigmoid = h_sigmoid(inplace=inplace)def forward(self, x):return x * self.sigmoid(x)class CoordAtt(nn.Module):def __init__(self, inp, reduction=32):super(CoordAtt, self).__init__()self.pool_h = nn.AdaptiveAvgPool2d((None, 1))self.pool_w = nn.AdaptiveAvgPool2d((1, None))mip = max(8, inp // reduction)self.conv1 = nn.Conv2d(inp, mip, kernel_size=1, stride=1, padding=0)self.bn1 = nn.BatchNorm2d(mip)self.act = h_swish()self.conv_h = nn.Conv2d(mip, inp, kernel_size=1, stride=1, padding=0)self.conv_w = nn.Conv2d(mip, inp, kernel_size=1, stride=1, padding=0)def forward(self, x):identity = xn, c, h, w = x.size()x_h = self.pool_h(x)x_w = self.pool_w(x).permute(0, 1, 3, 2)y = torch.cat([x_h, x_w], dim=2)y = self.conv1(y)y = self.bn1(y)y = self.act(y)x_h, x_w = torch.split(y, [h, w], dim=2)x_w = x_w.permute(0, 1, 3, 2)a_h = self.conv_h(x_h).sigmoid()a_w = self.conv_w(x_w).sigmoid()out = identity * a_w * a_hreturn out

CA注意力机制的注册和引用如下:

 ultralytics/nn/modules/_init_.py文件中:

  ultralytics/nn/tasks.py文件夹中:

 在tasks.py中的parse_model中添加如下代码:

        elif m in {CoordAtt}:args=[ch[f],*args]

新建相应的yolov8s-CA.yaml文件,代码如下:

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect# Parameters
nc: 80  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'# [depth, width, max_channels]n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPss: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPsm: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPsl: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPsx: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs# YOLOv8.0n backbone
backbone:# [from, repeats, module, args]- [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2- [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4- [-1, 3, C2f, [128, True]]- [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8- [-1, 6, C2f, [256, True]]- [-1,1,CoordAtt,[]]- [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16- [-1, 6, C2f, [512, True]]- [-1,1,CoordAtt,[]]- [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32- [-1, 3, C2f, [1024, True]]- [-1,1,CoordAtt,[]]- [-1, 1, SPPF, [1024, 5]]  # 9# YOLOv8.0n head
head:- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 8], 1, Concat, [1]]  # cat backbone P4- [-1, 3, C2f, [512]]  # 12- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 5], 1, Concat, [1]]  # cat backbone P3- [-1, 3, C2f, [256]]  # 15 (P3/8-small)- [-1, 1, Conv, [256, 3, 2]]- [[-1, 15], 1, Concat, [1]]  # cat head P4- [-1, 3, C2f, [512]]  # 18 (P4/16-medium)- [-1, 1, Conv, [512, 3, 2]]- [[-1, 12], 1, Concat, [1]]  # cat head P5- [-1, 3, C2f, [1024]]  # 21 (P5/32-large)- [[18, 21, 24], 1, Detect, [nc]]  # Detect(P3, P4, P5)

在main.py文件中进行训练:

if __name__ == '__main__':# 使用yaml配置文件来创建模型,并导入预训练权重.model = YOLO('ultralytics/cfg/models/v8/yolov8s-CA.yaml')# model.load('yolov8n.pt')model.train(**{'cfg': 'ultralytics/cfg/default.yaml', 'data': 'dataset/data.yaml'})

http://www.ho-use.cn/article/1322.html

相关文章:

  • wordpress建视频网站可以吗免费seo搜索优化
  • 5188站长平台怎么接app推广的单子
  • 机关网站建设需求文档英文网站设计公司
  • 网站推广服务网站连锁站长网站工具
  • 网站建设绩效考核方案广告投放收费标准
  • 网站排名怎么靠前关键词挖掘站长工具
  • 做web网站挣钱么网络营销外包收费
  • 济南网站定制什么是关键词排名优化
  • 济南建站价格品牌网络营销策划
  • 3d全景网站怎么做友情链接怎么互换
  • seo网站推广怎么收费经典seo伪原创
  • 石家庄网站制作哪家好推广渠道有哪些
  • 沈阳三好街做网站公司网站如何做seo排名
  • 外贸商城网站建设公司2023最火的十大新闻
  • 自制链接生成seo关键词推广方式
  • 做门户网站经验关键词优化的技巧
  • 做网站常用的套件点石关键词排名优化软件
  • 西藏建设厅网站智能建站平台
  • 如何做推广麦当劳的网站微信朋友圈软文大全
  • 博物馆网站建设说明网上宣传方法有哪些
  • 七牛云客服电话seo教程seo官网优化详细方法
  • 专门做外贸的网站沈阳网站关键词优化多少钱
  • 郑州市二七建设局网站今日国际军事新闻最新消息
  • 成品网站灬1688重庆森林为什么不能看
  • 绵阳手机网站制作网络推广方法有哪几种
  • 珠海建网站的联系方式网站优化公司大家好
  • 大型网站seo方案一键优化清理加速
  • 北京网站开发公司前十名发布
  • 网页模版比较出名的网站郑州竞价托管
  • app软件开发公司怎么选长春seo顾问