当前位置: 首页 > news >正文

做企业网站需要资质吗北京城建亚泰建设集团有限公司网站首页

做企业网站需要资质吗,北京城建亚泰建设集团有限公司网站首页,怎么做和京东一样网站,亚马逊品牌网站怎么做文章目录 深度学习超参数调优网格搜索示例一#xff1a;网格搜索回归模型超参数示例二#xff1a;Keras网格搜索 随机搜索贝叶斯搜索 超参数调优框架Optuna深度学习超参数优化框架nvidia nemo大模型超参数优化框架 参数调整理论#xff1a; 黑盒优化#xff1a;超参数优化… 文章目录 深度学习超参数调优网格搜索示例一网格搜索回归模型超参数示例二Keras网格搜索 随机搜索贝叶斯搜索 超参数调优框架Optuna深度学习超参数优化框架nvidia nemo大模型超参数优化框架 参数调整理论 黑盒优化超参数优化算法最新进展总结 均为转载联系侵删 深度学习超参数调优 pytorch 网格搜索LSTM最优参数 python网格搜索优化参数Keras深度学习超参数优化官方手册Keras深度学习超参数优化手册-CSDN博客版超参数搜索不够高效这几大策略了解一下使用贝叶斯优化进行深度神经网络超参数优化 网格搜索 示例一网格搜索回归模型超参数 # grid search cnn for airline passengers from math import sqrt from numpy import array, mean from pandas import DataFrame, concat, read_csv from sklearn.metrics import mean_squared_error from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, Flatten, Conv1D, MaxPooling1D# split a univariate dataset into train/test sets def train_test_split(data, n_test):return data[:-n_test], data[-n_test:]# transform list into supervised learning format def series_to_supervised(data, n_in1, n_out1):df DataFrame(data)cols list()# input sequence (t-n, ... t-1)for i in range(n_in, 0, -1):cols.append(df.shift(i))# forecast sequence (t, t1, ... tn)for i in range(0, n_out):cols.append(df.shift(-i))# put it all togetheragg concat(cols, axis1)# drop rows with NaN valuesagg.dropna(inplaceTrue)return agg.values# root mean squared error or rmse def measure_rmse(actual, predicted):return sqrt(mean_squared_error(actual, predicted))# difference dataset def difference(data, order):return [data[i] - data[i - order] for i in range(order, len(data))]# fit a model def model_fit(train, config):# unpack confign_input, n_filters, n_kernel, n_epochs, n_batch, n_diff config# prepare dataif n_diff 0:train difference(train, n_diff)# transform series into supervised formatdata series_to_supervised(train, n_inn_input)# separate inputs and outputstrain_x, train_y data[:, :-1], data[:, -1]# reshape input data into [samples, timesteps, features]n_features 1train_x train_x.reshape((train_x.shape[0], train_x.shape[1], n_features))# define modelmodel Sequential()model.add(Conv1D(filtersn_filters, kernel_sizen_kernel, activationrelu, input_shape(n_input, n_features)))model.add(MaxPooling1D(pool_size2))model.add(Flatten())model.add(Dense(1))model.compile(lossmse, optimizeradam)# fitmodel.fit(train_x, train_y, epochsn_epochs, batch_sizen_batch, verbose0)return model# forecast with the fit model def model_predict(model, history, config):# unpack confign_input, _, _, _, _, n_diff config# prepare datacorrection 0.0if n_diff 0:correction history[-n_diff]history difference(history, n_diff)x_input array(history[-n_input:]).reshape((1, n_input, 1))# forecastyhat model.predict(x_input, verbose0)return correction yhat[0]# walk-forward validation for univariate data def walk_forward_validation(data, n_test, cfg):predictions list()# split datasettrain, test train_test_split(data, n_test)# fit modelmodel model_fit(train, cfg)# seed history with training datasethistory [x for x in train]# step over each time-step in the test setfor i in range(len(test)):# fit model and make forecast for historyyhat model_predict(model, history, cfg)# store forecast in list of predictionspredictions.append(yhat)# add actual observation to history for the next loophistory.append(test[i])# estimate prediction errorerror measure_rmse(test, predictions)print( %.3f % error)return error# score a model, return None on failure def repeat_evaluate(data, config, n_test, n_repeats10):# convert config to a keykey str(config)# fit and evaluate the model n timesscores [walk_forward_validation(data, n_test, config) for _ in range(n_repeats)]# summarize scoreresult mean(scores)print( Model[%s] %.3f % (key, result))return (key, result)# grid search configs def grid_search(data, cfg_list, n_test):# evaluate configsscores [repeat_evaluate(data, cfg, n_test) for cfg in cfg_list]# sort configs by error, ascscores.sort(keylambda tup: tup[1])return scores# create a list of configs to try def model_configs():# define scope of configsn_input [12]n_filters [64]n_kernels [3, 5]n_epochs [100]n_batch [1, 150]n_diff [0, 12]# create configsconfigs list()for a in n_input:for b in n_filters:for c in n_kernels:for d in n_epochs:for e in n_batch:for f in n_diff:cfg [a, b, c, d, e, f]configs.append(cfg)print(Total configs: %d % len(configs))return configs# define dataset # 下载数据集https://raw.githubusercontent.com/jbrownlee/Datasets/master/airline-passengers.csv series read_csv(airline-passengers.csv, header0, index_col0) data series.values # data split n_test 12 # model configs cfg_list model_configs() # grid search scores grid_search(data, cfg_list, n_test) print(done) # list top 10 configs for cfg, error in scores[:3]:print(cfg, error)示例二Keras网格搜索 调整batch size和epochs # Use scikit-learn to grid search the batch size and epochs import numpy as np import tensorflow as tf from sklearn.model_selection import GridSearchCV from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense from scikeras.wrappers import KerasClassifier # Function to create model, required for KerasClassifier def create_model():# create modelmodel Sequential()model.add(Dense(12, input_shape(8,), activationrelu))model.add(Dense(1, activationsigmoid))# Compile modelmodel.compile(lossbinary_crossentropy, optimizeradam, metrics[accuracy])return model # fix random seed for reproducibility seed 7 tf.random.set_seed(seed) # load dataset dataset np.loadtxt(pima-indians-diabetes.csv, delimiter,) # split into input (X) and output (Y) variables X dataset[:,0:8] Y dataset[:,8] # create model model KerasClassifier(modelcreate_model, verbose0) # define the grid search parameters batch_size [10, 20, 40, 60, 80, 100] epochs [10, 50, 100] param_grid dict(batch_sizebatch_size, epochsepochs) grid GridSearchCV(estimatormodel, param_gridparam_grid, n_jobs-1, cv3) grid_result grid.fit(X, Y) # summarize results print(Best: %f using %s % (grid_result.best_score_, grid_result.best_params_)) means grid_result.cv_results_[mean_test_score] stds grid_result.cv_results_[std_test_score] params grid_result.cv_results_[params] for mean, stdev, param in zip(means, stds, params):print(%f (%f) with: %r % (mean, stdev, param))更多参考https://machinelearningmastery.com/grid-search-hyperparameters-deep-learning-models-python-keras/随机搜索 # Load the dataset X, Y load_dataset()# Create model for KerasClassifier def create_model(hparams1dvalue,hparams2dvalue,...hparamsndvalue):# Model definition...model KerasClassifier(build_fncreate_model) # Specify parameters and distributions to sample from hparams1 randint(1, 100) hparams2 [elu, relu, ...] ... hparamsn uniform(0, 1)# Prepare the Dict for the Search param_dist dict(hparams1hparams1, hparams2hparams2, ...hparamsnhparamsn)# Search in action! n_iter_search 16 # Number of parameter settings that are sampled. random_search RandomizedSearchCV(estimatormodel, param_distributionsparam_dist,n_itern_iter_search,n_jobs, cv, verbose) random_search.fit(X, Y)# Show the results print(Best: %f using %s % (random_search.best_score_, random_search.best_params_)) means random_search.cv_results_[mean_test_score] stds random_search.cv_results_[std_test_score] params random_search.cv_results_[params] for mean, stdev, param in zip(means, stds, params):print(%f (%f) with: %r % (mean, stdev, param))贝叶斯搜索 准备数据(train_images, train_labels), (test_images, test_labels) fashion_mnist.load_data()# split into train, validation and test sets train_x, val_x, train_y, val_y train_test_split(train_images, train_labels, stratifytrain_labels, random_state48, test_size0.05) (test_x, test_y)(test_images, test_labels)# normalize pixels to range 0-1 train_x train_x / 255.0 val_x val_x / 255.0 test_x test_x / 255.0#one-hot encode target variable train_y to_categorical(train_y) val_y to_categorical(val_y) test_y to_categorical(test_y)# pip3 install keras-tuner调整获取最优参数MLP版model Sequential()model.add(Dense(units hp.Int(dense-bot, min_value50, max_value350, step50), input_shape(784,), activationrelu))for i in range(hp.Int(num_dense_layers, 1, 2)):model.add(Dense(unitshp.Int(dense_ str(i), min_value50, max_value100, step25), activationrelu))model.add(Dropout(hp.Choice(dropout_ str(i), values[0.0, 0.1, 0.2])))model.add(Dense(10,activationsoftmax))hp_optimizerhp.Choice(Optimizer, values[Adam, SGD])if hp_optimizer Adam:hp_learning_rate hp.Choice(learning_rate, values[1e-1, 1e-2, 1e-3]) elif hp_optimizer SGD:hp_learning_rate hp.Choice(learning_rate, values[1e-1, 1e-2, 1e-3])nesterovTruemomentum0.9 model.compile(optimizer hp_optimizer, losscategorical_crossentropy, metrics[accuracy])tuner_mlp kt.tuners.BayesianOptimization(model,seedrandom_seed,objectiveval_loss,max_trials30,directory.,project_nametuning-mlp) tuner_mlp.search(train_x, train_y, epochs50, batch_size32, validation_data(dev_x, dev_y), callbackscallback) best_mlp_hyperparameters tuner_mlp.get_best_hyperparameters(1)[0] print(Best Hyper-parameters) # best_mlp_hyperparameters.values使用最优参数来训练模型model_mlp Sequential()model_mlp.add(Dense(best_mlp_hyperparameters[dense-bot], input_shape(784,), activationrelu))for i in range(best_mlp_hyperparameters[num_dense_layers]):model_mlp.add(Dense(unitsbest_mlp_hyperparameters[dense_ str(i)], activationrelu))model_mlp.add(Dropout(ratebest_mlp_hyperparameters[dropout_ str(i)]))model_mlp.add(Dense(10,activationsoftmax))model_mlp.compile(optimizerbest_mlp_hyperparameters[Optimizer], losscategorical_crossentropy,metrics[accuracy]) history_mlp model_mlp.fit(train_x, train_y, epochs100, batch_size32, validation_data(dev_x, dev_y), callbackscallback) # model_mlptuner_mlp.hypermodel.build(best_mlp_hyperparameters) # history_mlpmodel_mlp.fit(train_x, train_y, epochs100, batch_size32, validation_data(dev_x, dev_y), callbackscallback)效果测试mlp_test_loss, mlp_test_acc model_mlp.evaluate(test_x, test_y, verbose2) print(\nTest accuracy:, mlp_test_acc) # Test accuracy: 0.8823 CNN版基线模型model_cnn Sequential() model_cnn.add(Conv2D(32, (3, 3), activationrelu, input_shape(28, 28, 1))) model_cnn.add(MaxPooling2D((2, 2))) model_cnn.add(Flatten()) model_cnn.add(Dense(100, activationrelu)) model_cnn.add(Dense(10, activationsoftmax)) model_cnn.compile(optimizeradam, losscategorical_crossentropy, metrics[accuracy])贝叶斯搜索超参数model Sequential()model Sequential() model.add(Input(shape(28, 28, 1)))for i in range(hp.Int(num_blocks, 1, 2)):hp_paddinghp.Choice(padding_ str(i), values[valid, same])hp_filtershp.Choice(filters_ str(i), values[32, 64])model.add(Conv2D(hp_filters, (3, 3), paddinghp_padding, activationrelu, kernel_initializerhe_uniform, input_shape(28, 28, 1)))model.add(MaxPooling2D((2, 2)))model.add(Dropout(hp.Choice(dropout_ str(i), values[0.0, 0.1, 0.2])))model.add(Flatten())hp_units hp.Int(units, min_value25, max_value150, step25) model.add(Dense(hp_units, activationrelu, kernel_initializerhe_uniform))model.add(Dense(10,activationsoftmax))hp_learning_rate hp.Choice(learning_rate, values[1e-2, 1e-3]) hp_optimizerhp.Choice(Optimizer, values[Adam, SGD])if hp_optimizer Adam:hp_learning_rate hp.Choice(learning_rate, values[1e-2, 1e-3]) elif hp_optimizer SGD:hp_learning_rate hp.Choice(learning_rate, values[1e-2, 1e-3])nesterovTruemomentum0.9 model.compile( optimizerhp_optimizer,losscategorical_crossentropy, metrics[accuracy])tuner_cnn kt.tuners.BayesianOptimization(model,objectiveval_loss,max_trials100,directory.,project_nametuning-cnn)采用最佳超参数训练模型model_cnn Sequential()model_cnn.add(Input(shape(28, 28, 1)))for i in range(best_cnn_hyperparameters[num_blocks]):hp_paddingbest_cnn_hyperparameters[padding_ str(i)]hp_filtersbest_cnn_hyperparameters[filters_ str(i)]model_cnn.add(Conv2D(hp_filters, (3, 3), paddinghp_padding, activationrelu, kernel_initializerhe_uniform, input_shape(28, 28, 1)))model_cnn.add(MaxPooling2D((2, 2)))model_cnn.add(Dropout(best_cnn_hyperparameters[dropout_ str(i)]))model_cnn.add(Flatten()) model_cnn.add(Dense(best_cnn_hyperparameters[units], activationrelu, kernel_initializerhe_uniform))model_cnn.add(Dense(10,activationsoftmax))model_cnn.compile(optimizerbest_cnn_hyperparameters[Optimizer], losscategorical_crossentropy, metrics[accuracy]) print(model_cnn.summary())history_cnn model_cnn.fit(train_x, train_y, epochs50, batch_size32, validation_data(dev_x, dev_y), callbackscallback) cnn_test_loss, cnn_test_acc model_cnn.evaluate(test_x, test_y, verbose2) print(\nTest accuracy:, cnn_test_acc)# Test accuracy: 0.92超参数调优框架 Optuna-深度学习-超参数优化nvidia nemo-大模型训练优化自动超参数搜索分析https://github.com/NVIDIA/NeMo-Framework-Launcher Optuna深度学习超参数优化框架 import os import optuna import plotly from optuna.trial import TrialState import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import torch.utils.data from torchvision import datasets from torchvision import transforms from optuna.visualization import plot_optimization_history from optuna.visualization import plot_param_importances from optuna.visualization import plot_slice from optuna.visualization import plot_intermediate_values from optuna.visualization import plot_parallel_coordinate# 下述代码指定了SGDClassifier分类器的参数alpha、max_iter 的搜索空间、损失函数loss的搜索空间。 def objective(trial):iris sklearn.datasets.load_iris()classes list(set(iris.target))train_x, valid_x, train_y, valid_y sklearn.model_selection.train_test_split(iris.data, iris.target, test_size0.25, random_state0)#指定参数搜索空间alpha trial.suggest_loguniform(alpha, 1e-5, 1e-1)max_iter trial.suggest_int(max_iter,64,192,step64)loss trial.suggest_categorical(loss,[hinge,log,perceptron])clf sklearn.linear_model.SGDClassifier(alphaalpha,max_itermax_iter)# 下述代码指定了学习率learning_rate、优化器optimizer、神经元个数n_uint 的搜索空间。 def objective(trial):params {learning_rate: trial.suggest_loguniform(learning_rate, 1e-5, 1e-1),optimizer: trial.suggest_categorical(optimizer, [Adam, RMSprop, SGD]),n_unit: trial.suggest_int(n_unit, 4, 18)}model build_model(params)accuracy train_and_evaluate(params, model)return accuracy# 记录超参数训练过程 def objective(trial):iris sklearn.datasets.load_iris()classes list(set(iris.target))train_x, valid_x, train_y, valid_y sklearn.model_selection.train_test_split(iris.data, iris.target, test_size0.25, random_state0)alpha trial.suggest_loguniform(alpha, 1e-5, 1e-1)max_iter trial.suggest_int(max_iter,64,192,step64)loss trial.suggest_categorical(loss,[hinge,log,perceptron])clf sklearn.linear_model.SGDClassifier(alphaalpha,max_itermax_iter)for step in range(100):clf.partial_fit(train_x, train_y, classesclasses)intermediate_value 1.0 - clf.score(valid_x, valid_y)trial.report(intermediate_value, step)if trial.should_prune():raise optuna.TrialPruned()return 1.0 - clf.score(valid_x, valid_y)# 创建优化过程 def objective(trial):iris sklearn.datasets.load_iris()classes list(set(iris.target))train_x, valid_x, train_y, valid_y sklearn.model_selection.train_test_split(iris.data, iris.target, test_size0.25, random_state0)alpha trial.suggest_loguniform(alpha, 1e-5, 1e-1)max_iter trial.suggest_int(max_iter,64,192,step64)loss trial.suggest_categorical(loss,[hinge,log,perceptron])clf sklearn.linear_model.SGDClassifier(alphaalpha,max_itermax_iter)for step in range(100):clf.partial_fit(train_x, train_y, classesclasses)intermediate_value 1.0 - clf.score(valid_x, valid_y)trial.report(intermediate_value, step)if trial.should_prune():raise optuna.TrialPruned()return 1.0 - clf.score(valid_x, valid_y)study optuna.create_study(storagepath,study_namefirst,pruneroptuna.pruners.MedianPruner()) #study optuna.study.load_study(first,path) study.optimize(objective, n_trials20) print(Study statistics: ) print( Number of finished trials: , len(study.trials)) print( Number of pruned trials: , len(pruned_trials)) print( Number of complete trials: , len(complete_trials)) print(Best trial:) trial study.best_trial print( Value: , trial.value) print( Params: ) for key, value in trial.params.items():print({}:{}.format(key, value))# 可视化搜索结果 optuna.visualization.plot_contour(study)#若不行请尝试 vis_path rresult-vis/ graph_cout optuna.visualization.plot_contour(study,params[n_layers,lr]) plotly.offline.plot(graph_cout,filenamevis_pathgraph_cout.html)plot_optimization_history(study)#若不行请尝试 vis_path rresult-vis/ history plot_optimization_history(study) plotly.offline.plot(history,filenamevis_pathhistory.html)plot_intermediate_values(study)#若不行请尝试 vis_path rresult-vis/ intermed plot_intermediate_values(study) plotly.offline.plot(intermed,filenamevis_pathintermed.html)plot_slice(study, params[alpha,max_iter,loss])#若不行请尝试 vis_path rresult-vis/ slices plot_slice(study) plotly.offline.plot(slices,filenamevis_pathslices.html)plot_parallel_coordinate(study,params[alpha,max_iter,loss])#若不行请尝试 vis_path rresult-vis/ paraller plot_parallel_coordinate(study) plotly.offline.plot(paraller,filenamevis_pathparaller.html)nvidia nemo大模型超参数优化框架 用户手册nvidia nemo用户手册
http://www.ho-use.cn/article/10817361.html

相关文章:

  • 专业定制网站建设哪里有wordpress 文章缩进
  • 网站开发教程pdf用来制作网页的软件是
  • 如何做网站跳转登入中国怎么进fiverr网站做任务
  • 怎么做乞讨网站电影网站怎么做优化
  • 网站首页锚文本东莞房价2021
  • 手机网站建设报价多少wordpress中上传图片
  • 做跨境电商如何自建站wordpress的缺点
  • 站长推广网inews wordpress
  • 网站的关键词在哪里设置中山做网站的
  • 计算机应用专业(网站开发)吉林省建筑工程网
  • 狠狠做网站音乐网站设计素材
  • 湛江免费制作网站携程网站建设进度及实施过程
  • 网站建设对旅游意义wordpress卸载插件
  • 有哪些网站是静态网站珠宝网站建设方案
  • 建设微信网站需要服务器wordpress lophita
  • 下载别人做的ppt的网站附近装修设计公司
  • 公司网站建设及维护生物网站 template
  • 国内响应式网站修改wordpress的库名
  • 媒体广告北京seo网站推广
  • 广州专业建站网站建设p2p
  • 微信人生里面微网站怎么做鄂尔多斯网站制作公司
  • 个人能备案多少个网站重庆皇华建设集团有限公司网站
  • 网站框架建设网络广告效果评估
  • wordpress 列表 分类厦门网站seo
  • 柳州做网站价格莱芜住房和城乡建设厅网站
  • 做网站有免费的服务器吗物联网今天正式开网
  • 织梦网站被做跳转大石桥做网站
  • 点开图片跳到网站怎么做的企业网络营销推广方案策划
  • 无极任务平台网站进入中企动力网站开发
  • 上海建设银行青浦分行网站甘肃建设网站首页